

PROBLEM 9.1

For the loading shown, determine (a) the equation of the elastic curve for the cantilever beam $A B,(b)$ the deflection at the free end, (c) the slope at the free end.

SOLUTION

$$
\begin{aligned}
&+\Sigma \Sigma M_{J}=0:-M-P(L-x)=0 \\
& M=-P(L-x) \\
& E I \frac{d^{2} y}{d x^{2}}=-P(L-x)=-P L+P x \\
& E I \frac{d y}{d x}=-P L x+\frac{1}{2} P x^{2}+C_{1} \\
& {\left[x=0, \frac{d y}{d x}=0\right]: \quad 0=-0+0+C_{1} \quad C_{1}=0 } \\
& E I y=-\frac{1}{2} P L x^{2}+\frac{1}{6} P x^{3}+C_{1} x+C_{2} \\
& {[x}=0, y=0]: \quad 0=-0+0+0+C_{2} \quad C_{2}=0
\end{aligned}
$$

(a) Elastic curve.

$$
y=-\frac{P x^{2}}{6 E I}(3 L-x)
$$

$$
\frac{d y}{d x}=-\frac{P x}{2 E I}(2 L-x)
$$

(b) $\quad \underline{y}$ at $x=L$.

$$
y_{B}=-\frac{P L^{2}}{6 E I}(3 L-L)=-\frac{P L^{3}}{3 E I}
$$

$$
y_{B}=\frac{P L^{3}}{3 E I} \downarrow \longleftarrow
$$

(c) $\frac{d y}{d x}$ at $x=L$.

$$
\left.\frac{d y}{d x}\right|_{B}=-\frac{P L}{2 E I}(2 L-L)=-\frac{P L^{2}}{2 E I}
$$

$$
\theta_{B}=\frac{P L^{2}}{2 E I} \longleftarrow
$$

PROBLEM 9.8

For the beam and loading shown, determine (a) the equation of the elastic curve for portion $A B$ of the beam, (b) the slope at $A,(c)$ the slope at B.

SOLUTION

$[x=0, y=0] \quad[x=L, y=0]$
Using free body $A B C$,

$+\Sigma M_{B}=0: \quad-R_{A} L+(w L)\left(\frac{L}{2}\right)-(w L)\left(\frac{L}{4}\right)=0$

For portion $A B, \quad(0<x<L)$

$$
\begin{aligned}
+\Sigma M_{J}=0: & M-R_{A} x+(w x)\left(\frac{x}{2}\right)=0 \\
M & =\frac{1}{4} w L x-\frac{1}{2} w x^{2}
\end{aligned}
$$

$$
E I \frac{d^{2} y}{d x^{2}}=\frac{1}{4} w L x-\frac{1}{2} w x^{2}
$$

$$
E I \frac{d y}{d x}=\frac{1}{8} w L x^{2}-\frac{1}{6} w x^{3}+C_{1}
$$

$$
E I y=\frac{1}{24} w L x^{3}-\frac{1}{24} w x^{4}+C_{1} x+C_{2}
$$

$$
[x=0, y=0]: \quad 0=0-0+0+C_{2} \quad C_{2}=0
$$

$$
[x=L, y=0]: \quad 0=\frac{1}{24} w L^{4}-\frac{1}{24} w L^{4}+C_{1} L+0=0 \quad C_{1}=0
$$

(a) Elastic curve $(0 \leq x \leq L)$.

$$
y=\frac{w}{24 E I}\left(L x^{3}-x^{4}\right)
$$

$$
\frac{d y}{d x}=\frac{w}{24 E I}\left(3 L x^{2}-4 x^{3}\right)
$$

(b) $\frac{d y}{d x}$ at $x=0$.

$$
\left.\frac{d y}{d x}\right|_{A}=0
$$

$$
\theta_{A}=0
$$

(c) $\frac{d y}{d x}$ at $x=L$.

$$
\left.\frac{d y}{d x}\right|_{B}=-\frac{w L^{3}}{24 E I}
$$

$$
\theta_{B}=\frac{w L^{3}}{24 E I} \Sigma
$$

SOLUTION

Using ACB as a free body and noting that $L=3 a$,
$+\sum M_{A}=0: \quad R_{B} L-(w a)\left(\frac{a}{2}\right)=0$
$[x=0, y=0]$
$[x=a, y=y]$
$[x=L, y=0]$
$R_{B}=(w a) \frac{a}{2 L}=\frac{1}{6} w a$
$\left[x=a, \frac{d y}{d x}=\frac{d y}{d x}\right]$

$+\uparrow \sum F_{y}=0: \quad R_{A}+R_{B}-w a=0 \quad R_{A}=\frac{5}{6} w a$

$M=R_{A} x-\frac{1}{2} w x^{2}$
$E I \frac{d^{2} y}{d x^{2}}=R_{A} x-\frac{1}{2} w x^{2}$
$E I \frac{d y}{d x}=\frac{1}{2} R_{A} x^{2}-\frac{1}{6} w x^{3}+C_{1}$
$E I y=\frac{1}{6} R_{A} x^{3}-\frac{1}{24} w x^{4}+C_{1} x+C_{2}$
$[x=0, y=0] \quad 0=0-0+0+C_{2} \quad C_{2}=0$
$E I y=\frac{1}{6} R_{A} x^{3}-\frac{1}{24} w x^{4}+C_{1} x$
$E I \frac{d y}{d x}=\frac{1}{2} R_{A} x^{2}-\frac{1}{6} w x^{3}+C_{1}$

$$
\begin{aligned}
& M=R_{B}(L-x) \\
& E I \frac{d^{2} y}{d x^{2}}=R_{B}(L-x) \\
& E I \frac{d y}{d x}=-\frac{1}{2} R_{B}(L-x)^{2}+C_{3} \\
& E I y=\frac{1}{6} R_{B}(L-x)^{3}+C_{3} x+C_{4} \\
& {[x=L, y=0] \quad 0=0+R_{3} L+C_{4} \quad C_{4}=-C_{3} L} \\
& E I y=\frac{1}{6} R_{B}(L-x)^{2}-C_{3}(L-x) \\
& E I \frac{d y}{d x}=-\frac{1}{2} R_{B}(L-x)^{2}+C_{3}
\end{aligned}
$$

PROBLEM 9.15 (Continued)

$$
\begin{aligned}
& {\left[x=a, \frac{d y}{d x}=\frac{d y}{d x}\right] \quad \frac{1}{2} R_{A} a^{2}-\frac{1}{6} w a^{3}+C_{1}=-\frac{1}{2} R_{B}(2 a)^{2}+C_{3}} \\
& C_{3}=C_{1}+\frac{1}{2} R_{A} a^{2}-\frac{1}{6} w a^{3}+\frac{1}{2} R_{B}(2 a)^{2}=C_{1}+\frac{7}{12} w a^{3} \\
& {[x=a, y=y] \quad \frac{1}{6} R_{A} a^{3}-\frac{1}{24} w a^{4}+C_{1} a=\frac{1}{6} R_{B}(2 a)^{3}-\left(C_{1}+\frac{7}{12} w a^{3}\right)} \\
& 3 C_{1} a=-\frac{1}{6} R_{A} a^{3}+\frac{1}{24} w a^{4}+\frac{1}{6} R_{B}(2 a)^{3}-\frac{7}{12} w a^{2}(2 a)=-\frac{25}{24} w a^{4} \\
& C_{1}=-\frac{25}{72} w a^{3}
\end{aligned}
$$

For $0 \leq x \leq a, \quad E I y=\frac{5}{36} w a x^{3}-\frac{1}{24} w x^{4}-\frac{25}{72} w a^{3} x$

$$
E I \frac{d y}{d x}=\frac{5}{12} w a x^{2}-\frac{1}{6} w x^{3}-\frac{25}{72} w a^{3}
$$

Data: $\quad w=50 \times 10^{3} \mathrm{~N} / \mathrm{m}, a=2 \mathrm{~m}, \quad E=200 \times 10^{9} \mathrm{~Pa}$

$$
I=84.9 \times 10^{6} \mathrm{~mm}^{4}=84.9 \times 10^{-6} \mathrm{~m}^{4}, \quad E I=16.98 \times 10^{6} \mathrm{~N} \cdot \mathrm{~m}^{2}
$$

(a) Slope at $x=0$.

$$
\begin{gathered}
16.98 \times\left. 10^{6} \frac{d y}{d x}\right|_{A}=0-0-\frac{25}{72}\left(50 \times 10^{3}\right)(2)^{3} \\
\left.\frac{d y}{d x}\right|_{A}=\theta_{A}=-8.18 \times 10^{-3}
\end{gathered}
$$

$$
\theta_{A}=8.18 \times 10^{-3} \mathrm{rad}\ulcorner 4
$$

(b) Deflection at $x=2 \mathrm{~m}$.

$$
\begin{aligned}
E I y_{C} & =\frac{5}{36} w a^{4}-\frac{1}{24} w a^{4}-\frac{25}{72} w a^{4}=-\frac{1}{4} w a^{4} \\
16.98 \times 10^{6} y_{C} & =-\frac{1}{4}\left(50 \times 10^{3}\right)(2)^{4} \quad y_{C}=-11.78 \times 10^{-3} \mathrm{~m}
\end{aligned} \quad y_{C}=11.78 \mathrm{~mm} \downarrow
$$

PROBLEM 9.21

For the beam and loading shown, determine the reaction at the roller support.

$$
\begin{array}{ll}
{[x=0, y=0]} & {[x=L, y=0]} \\
{\left[x=0, \frac{d y}{d x}=0\right]} &
\end{array}
$$

SOLUTION

Reactions are statically indeterminate.
Boundary conditions are shown above.
Using free body $J B$,

$$
\begin{aligned}
& \text { +) } \Sigma M_{J}=0:-M+R_{B}(L-x)+\frac{1}{2} w_{0}(L-x) \frac{2}{3}(L-x) \\
& +\frac{1}{2} \frac{w_{0} x}{L}(L-x) \frac{1}{3}(L-x)=0 \\
& M=R_{B}(L-x)-\frac{w_{0}}{6 L}\left[2 L(L-x)^{2}+x(L-x)^{2}\right] \\
& =R_{B}(L-x)-\frac{w_{0}}{6 L}\left[2 L^{3}-4 L^{2} x+2 L x^{2}+x L^{2}-2 L x^{2}+x^{3}\right] \\
& \quad=R_{B}(L-x)-\frac{w_{0}}{6 L}\left(x^{3}-3 L^{2} x+2 L^{3}\right) \\
& E I \frac{d^{2} y}{d x^{2}}=R_{B}(L-x)-\frac{w_{0}}{6 L}\left(x^{3}-3 L^{2} x+2 L^{3}\right) \\
& E I \frac{d y}{d x}=R_{B}\left(L x-\frac{1}{2} x^{2}\right)-\frac{w_{0}}{6 L}\left(\frac{1}{4} x^{4}-\frac{3}{2} L^{2} x^{2}+2 L^{3} x\right)+C_{1} \\
& E I y=R_{B}\left(\frac{1}{2} L x^{2}-\frac{1}{6} x^{3}\right)-\frac{w_{0}}{6 L}\left(\frac{1}{20} x^{5}-\frac{1}{2} L^{2} x^{3}+L^{3} x^{2}\right)+C_{1} x+C_{2} \\
& \quad[x=0, y=0] \rightarrow C_{2}=0 \\
& \quad\left[x=0, \frac{d y}{d x}=0\right] \rightarrow C_{1}=0 \\
& \quad[x=L, y=0] \quad 0=R_{B} L^{3}\left(\frac{1}{2}-\frac{1}{6}\right)-\frac{w_{0} L^{4}}{6}\left(\frac{1}{20}-\frac{1}{2}+1\right) \\
& \quad \frac{1}{3} R_{B}=\left(\frac{1}{6}\right)\left(\frac{11}{20}\right) w_{0} L
\end{aligned}
$$

PROBLEM 9.26

Determine the reaction at the roller support and draw the bending moment diagram for the beam and loading shown.
$[x=0, y=0] \quad[x=L, y=0]$
$\left[x=0, \frac{d y}{d x}=0\right]$

SOLUTION

Reactions are statically indeterminate.

$$
\begin{aligned}
+\uparrow \Sigma F_{y} & =0: \quad R_{A}+R_{B}=0 \quad R_{A}=-R_{B} \\
+\Sigma M_{A} & =0: \quad-M_{A}-M_{0}+R_{B} L=0 \quad M_{A}=R_{B} L-M_{0} \\
& \quad 0<x<\frac{L}{2} \\
M & =R_{B} x+M_{A}=-M_{0}+R_{B} L-R_{B} x \\
E I \frac{d^{2} y}{d x^{2}} & =-M_{0}+R_{B}(L-x) \\
E I \frac{d y}{d x} & =-M_{0} x+R_{B}\left(L x-\frac{1}{2} x^{2}\right)+C_{1} \\
E I y & =-\frac{1}{2} M_{0} x^{2}+R_{B}\left(\frac{1}{2} L x^{2}-\frac{1}{6} x^{3}\right)+C_{1} x+C_{2} \\
\frac{L}{2} & <x<L \\
\frac{1}{M} & =R_{B}(L-x) \\
E I \frac{d^{2} y}{d x^{2}} & =R_{B}(L-x) \\
E I \frac{d y}{d x} & =R_{B}\left(L x-\frac{1}{2} x^{2}\right)+C_{3} \\
E I y & =R_{B}\left(\frac{1}{2} L x^{2}-\frac{1}{6} x^{3}\right)+C_{3} x+C_{4}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[x=0, \frac{d y}{d x}=0\right] 0+0+C_{1}=0 \quad C_{1}=0} \\
& {[x=0, y=0] \quad 0+0+0+C_{2}=0 \quad C_{2}=0} \\
& {\left[x=\frac{L}{2}, \frac{d y}{d x}=\frac{d y}{d x}\right]} \\
& -M_{0} \frac{L}{2}+R_{B}\left(\frac{1}{2} L^{2}-\frac{1}{6} L^{2}\right)=R_{B}\left(\frac{1}{2} L^{2}-\frac{1}{6} L^{2}\right)+C_{3} \quad C_{3}=-\frac{M_{0} L}{2} \\
& {\left[x=\frac{L}{2}, y=y\right]} \\
& -\frac{1}{2} M_{0}\left(\frac{L}{2}\right)^{2}+R_{B}\left(\frac{1}{8} L^{3}-\frac{1}{48} L^{3}\right)=R_{B}\left(\frac{1}{8} L^{3}-\frac{1}{48} L^{3}\right)+C_{3} \frac{L}{2}+C_{4} \\
& C_{4}=-\frac{1}{8} M_{0} L^{2}-\frac{1}{2} C_{3} L \\
& =\left(-\frac{1}{8}+\frac{1}{4}\right) M_{0} L^{2}=\frac{1}{8} M_{0} L^{2} \\
& {[x=L, y=0]} \\
& R_{B}\left(\frac{1}{2} L^{3}-\frac{1}{6} L^{3}\right)+\frac{M_{0} L}{2} L+\frac{1}{8} M_{0} L^{2}=0 \\
& \left(\frac{1}{2}-\frac{1}{6}\right) R_{B} L^{3}=\left(\frac{1}{2}-\frac{1}{8}\right) M_{0} L^{2} \quad \frac{1}{3} R_{B}=\frac{3}{8} \frac{M_{0}}{L} \\
& M_{A}=\frac{9}{8} M_{0}-M_{0}=\frac{1}{8} M_{0} \\
& M_{C^{-}}=-M_{0}+\frac{9}{8} \frac{M_{0}}{L}=-\frac{7}{16} M_{0} \\
& M_{C^{-}}=-\frac{7}{16} M_{0} \\
& M_{C^{+}}=R_{B}\left(L-\frac{L}{2}\right)=\frac{9}{8} \frac{M_{0}}{L}\left(\frac{L}{2}\right)=\frac{9}{16} M_{0} \\
& M_{C^{+}}=\frac{9}{16} M_{0}
\end{aligned}
$$

PROBLEM 9.33

Determine the reaction at A and draw the bending moment diagram for the beam and loading shown.

$$
\begin{array}{ll}
{[x=0, y=0]} & {[x=L, y=0]} \\
{\left[x=0, \frac{d y}{d x}=0\right]} & {\left[x=L, \frac{d y}{d x}=0\right]}
\end{array}
$$

SOLUTION

Reactions are statically indeterminate.
By symmetry, $\quad R_{B}=R_{A} ; \quad M_{B}=M_{A}$

$$
\begin{aligned}
& \frac{d y}{d x}=0 \quad \text { at } \quad x=\frac{L}{2} \\
&+\uparrow \Sigma F_{y}=0: \quad R_{A}+R_{B}-w L=0
\end{aligned}
$$

$$
R_{B}=R_{A}=\frac{1}{2} w L \uparrow
$$

Over entire beam, $\quad M=M_{A}+R_{A} x-\frac{1}{2} w x^{2}$

$$
\begin{aligned}
& E I \frac{d^{2} y}{d x^{2}}=M_{A}+\frac{1}{2} w L x-\frac{1}{2} w x^{2} \\
& E I \frac{d y}{d x}=M_{A} x+\frac{1}{4} w L x^{2}-\frac{1}{6} w x^{3}+C_{1} \\
& {\left[x=0, \frac{d y}{d x}=0\right] \quad 0+0-0+C_{1}=0 \quad C_{1}=0} \\
& {\left[x=\frac{L}{2}, \frac{d y}{d x}=0\right] \quad \frac{1}{2} M_{A} L+\frac{1}{16} w L^{3}-\frac{1}{48} w L^{3}+0=0}
\end{aligned}
$$

$$
\begin{array}{r}
M_{A}=-\frac{1}{12} w L^{2} \\
M=-\frac{1}{12} w L^{2}+\frac{1}{2} w L x-\frac{1}{2} w x^{2} \\
M=w\left[6 x(L-x)-L^{2}\right] / 12
\end{array}
$$

PROBLEM 9.65

For the cantilever beam and loading shown, determine the slope and deflection at the free end.

SOLUTION

Loading I: Downward distributed load w applied to portion $A B$.

Case 2 of Appendix D applied to portion $A B$.

$$
\begin{aligned}
& \theta_{B}^{\prime}=-\frac{w(L / 2)^{3}}{6 E I}=-\frac{1}{48} \frac{w L^{2}}{E I} \\
& y_{B}^{\prime}=-\frac{w(L / 2)^{4}}{8 E I}=-\frac{1}{128} \frac{w L^{4}}{E I}
\end{aligned}
$$

Portion $B C$ remains straight.

$$
\begin{aligned}
& \theta_{C}^{\prime}=\theta_{B}^{\prime}=-\frac{1}{48} \frac{w L^{3}}{E I} \\
& y_{C}^{\prime}=y_{B}^{\prime}+\left(\frac{L}{2}\right) \theta_{B}^{\prime}=-\frac{1}{128} \frac{w L^{4}}{E I}-\frac{1}{96} \frac{w L^{4}}{E I}=-\frac{7}{384} \frac{w L^{4}}{E I}
\end{aligned}
$$

Loading II: Counterclockwise couple $\frac{w L^{2}}{24}$ applied at C.
Case 3 of Appendix D.

$$
\begin{aligned}
& \theta_{C}^{\prime \prime}=\frac{\left(w L^{2} / 24\right) L}{E I}=\frac{1}{24} \frac{w L^{3}}{E I} \\
& y_{C}^{\prime \prime}=\frac{\left(w L^{2} / 24\right) L^{2}}{2 E I}=\frac{1}{48} \frac{w L^{4}}{E I}
\end{aligned}
$$

By superposition,

$$
\begin{array}{ll}
\theta_{C}=\theta_{C}^{\prime}+\theta_{C}^{\prime \prime}=-\frac{1}{48} \frac{w L^{3}}{E I}+\frac{1}{24} \frac{w L^{3}}{E I} & \theta_{C}=\frac{1}{48} \frac{w L^{3}}{E I} \lll \\
y_{C}=y_{C}^{\prime}+y_{C}^{\prime \prime}=-\frac{7}{384} \frac{w L^{4}}{E I}+\frac{1}{48} \frac{w L^{4}}{E I} & y_{C}=\frac{1}{384} \frac{w L^{4}}{E I} \uparrow<
\end{array}
$$

PROBLEM 9.80

For the uniform beam shown, determine (a) the reaction at $A,(b)$ the reaction at B.

SOLUTION

(I)

Beam is indeterminate to first degree. Consider R_{A} as redundant and replace the given loading by loadings I, II, and III.

Loading I: \quad Case 1 of Appendix D.

$$
\left(y_{A}\right)_{I}=\frac{R_{A} L^{3}}{3 E I}
$$

Loading II: \quad Case 2 of Appendix D.

$$
\left(y_{A}\right)_{I I}=-\frac{w L^{4}}{8 E I}
$$

Loading III: Case 2 of Appendix D (portion $C B$).

$$
\begin{aligned}
& \left(\theta_{C}\right)_{I I I}=-\frac{w(L / 2)^{3}}{6 E I}=-\frac{1}{48} \frac{w L^{3}}{E I} \\
& \left(y_{C}\right)_{I I I}=\frac{w(L / 2)^{4}}{8 E I}=\frac{1}{128} \frac{w L^{4}}{E I}
\end{aligned}
$$

Portion $A C$ remains straight.

$$
\left(y_{A}\right)_{I I I}=\left(y_{C}\right)_{I I I}+\frac{L}{2}\left(\theta_{C}\right)_{I I I}=\frac{7}{384} \frac{w L^{4}}{E I}
$$

Superposition and constraint: $\quad y_{A}=\left(y_{A}\right)_{I}+\left(y_{A}\right)_{I I}+\left(y_{A}\right)_{I I I}=0$
(a) $\frac{1}{3} \frac{R_{A} L^{3}}{3 E I}-\frac{1}{8} \frac{w L^{4}}{E I}+\frac{7}{384} \frac{w L^{4}}{E I}=\frac{1}{3} \frac{R_{A} L^{3}}{E I}-\frac{41}{384} \frac{w L^{4}}{E I}=0$

$$
R_{A}=\frac{41}{128} w L \uparrow
$$

Statics:
(b) $\quad+\uparrow_{\Sigma} F_{y}=0$:
$\frac{41}{128} w L-\frac{1}{2} w L+R_{B}=0$

$$
R_{B}=\frac{23}{128} w L \uparrow
$$

$$
\left.+\Sigma M_{B}=0:-\left(\frac{41}{128} w L\right) L-\left(\frac{1}{2} w L\right)\left(\frac{3 L}{4}\right)-M_{B}=0 \quad M_{B}=\frac{7}{128} w L^{2}\right)
$$

SOLUTION

Beam is statically indeterminate to first degree. Consider R_{B} to be the redundant reaction, and replace the loading by loading I and II.

Loading I: Case 5 of Appendix D.

$$
\left(y_{B}\right)_{I}=-\frac{R_{B} a^{2} b^{2}}{3 E I L}=-\frac{R_{B}(2 L / 3)^{2}(L / 3)^{2}}{3 E I L}=-\frac{4}{243} \frac{R_{B} L^{3}}{E I}
$$

Loading II: Case 7 of Appendix D.

$$
\left(y_{B}\right)_{I I}=-\frac{M_{0}}{6 E I L}-\left(x^{3}-L^{2} x\right)=-\frac{M_{0}}{6 E I L}\left[\left(\frac{L}{3}\right)^{3}-L^{2}\left(\frac{L}{3}\right)\right]
$$

$$
=\frac{4}{81} \frac{M_{0} L^{2}}{E I}
$$

Superposition and constraint:

$$
\begin{array}{rlr}
y_{B}=\left(y_{B}\right)_{I}+\left(y_{B}\right)_{I I}=0 & \\
-\frac{4}{243} \frac{R_{B} L^{3}}{E I}+\frac{4}{81} \frac{M_{0} L^{2}}{E I}=0 \quad R_{B}=3 \frac{M_{0}}{L} \downarrow .
\end{array}
$$

Statics:

$$
\begin{array}{rlrl}
+ \\
& & M_{C}=0: & -R_{A} L+M_{0}+3 \frac{M_{0}}{L} \cdot \frac{L}{3}=0
\end{array} \quad R_{A}=2 \frac{M_{0}}{L} \uparrow .
$$

